IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 7, NO. 7, JULY 2017

1003

Design, Fabrication, and Characterization of
Dense Compressible Microinterconnects

Paul K. Jo, Student Member, IEEE, Muneeb Zia, Student Member, IEEE,
Joe L. Gonzalez, Student Member, IEEE, Hanju Oh, Student Member, IEEE,
and Muhannad S. Bakir, Senior Member, IEEE

Abstract—This paper presents gold passivated NiW com-
pressible microinterconnects (CMIs) with 75 pm height and
150 pm in-line pitch. The CMIs are batch fabricated using
CMOS-compatible processes. The fabricated CMIs have a mea-
sured compliance of up to 13.12 mm/N and demonstrate 45 pm
elastic vertical range of motion. Moreover, the CMIs are shown
to return to their original geometrical profile after several
deflections and consequently are able to maintain contact with
their corresponding pads at all times. The measured four-point
resistance of a CMI, which includes contact resistance, is as low
as 176.3 m<.

Index Terms—3-D IC, interconnect, microelectromechanical
system (MEMS), microspring, multichips, packaging, probe tip,
temporary interconnection.

I. INTRODUCTION

NTERCONNECTS play a critical role in virtually all

microelectronic applications including digital, mixed-
signal, photonic, microelectromechanical systems (MEMS),
and sensor microsystems [1], [2]. They are key in influencing
microsystem form factor, electrical performance, power con-
sumption, signal integrity, and a host of other system metrics.
Of particular importance are first-level interconnects, which
are used to electrically interconnect and mechanically bond a
die to a package substrate. The density, electrical attributes,
and mechanical properties of first-level interconnects impact
the overall mechanical integrity of the resulting assembled
microsystem, signaling bandwidth density between dice, and
power supply noise in digital microsystems. While solder
bumps have become a key technology for first-level inter-
connects, the technology unfortunately leaves a number of
attributes desired in modern microsystems. First, solder bump
density scaling is difficult particularly due to solder shorting,
increased height uniformity constraints (on the substrate and
the bumps) for robust assembly, and reduced mechanical
strength of the resulting bonds. This is particularly a challenge
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when one needs to form bumps with multiple densities on
the same chip, as is required in the embedded multidie
interconnect bridge technology [3] and other emerging het-
erogeneous interconnection platforms. When solder shorting
occurs, it is virtually impossible to undo, and it is often the
case that the whole package or module has to be disposed of,
which is a costly solution. Additionally, underfill is usually
required for solder bump assembled dice. Die rework or
replacement is difficult and costly, particularly for fine-pitch
applications.

Compliant first-level interconnects, which can provide elec-
trical interconnections between tiers through a pressure contact
mechanism, can circumvent many of the challenges in solder
bumps as no reflow processes are needed, no metallurgical
bonds are formed, no underfill is required, and any mechan-
ical compression on the interconnects does not cause lateral
spreading, which might result in shorting. These benefits have
spurred much research in compliant interconnects [4]-[16],
which will be discussed later. There are many commer-
cial applications for mechanically compliant interconnects as
second-level interconnects as well. One relevant application
space relates to socketed systems, as in Intel’s Core i7 and
AMD’s Opteron processors land grid array (LGA) sockets;
since the LGA socket interconnections are pressure-contact-
based, they allow for a simple replacement or upgrade of the
interconnected processor. Moreover, compliant interconnects
have been used in the assembly of interposers and probe cards
for wafer sorting and other testing applications.

A number of free-standing compliant interconnect technolo-
gies have been presented in the literature as first-level inter-
connects, including sea-of-leads (SoLs) [4]-[6], G-Helix [7],
Flex-Connect [8], p-Helix [9], compliant die-package
interconnects [10], and mechanically flexible intercon-
nects [11]-[13]. Additional compliant interconnects include
rematable spring interconnects [14], J-springs [15], and coiled
microsprings [16], which are upward-curved interconnects.
To better differentiate some of the compliant interconnect
technologies, a comparison is summarized in Table I. Although
many compliant interconnect technologies exist, several
significant issues limit their utilization in emerging microsys-
tems. For example, while the demonstrated lithographi-
cally defined compliant interconnects are based on simple
fabrication processes, their compliance and elastic range are
limited [7], [9]. Moreover, while other compliant intercon-
nects, which are fabricated by stress engineering, have demon-
strated a relatively large elastic range of motion and a high
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TABLE I

COMPARISON OF COMPLIANT INTERCONNECTS

. . Compliance Vertical range of
Technology flt:ll; I-zelfll;t (out-of-plane) motion
" " (mm /N) (1m)
Sea-of-leads (SoL) [4] >120 60 -90 05-2 <30
G-Helix [7] 100 78 14.7 NA
p-Helix [9] 200 110 >7.1 NA
Rematable spring interconnects [14] 180 50 218 32
J-Springs [15] >30 100 > 3500 NA

compliance, there is poor control over their final geometric
design, and they possess very high compliance, which is not
desirable [14], [15].

To this end, this paper presents highly flexible and
elastically deformable interconnects, which we call com-
pressible microinterconnects (CMIs). The key features of
the CMI technology include: 1) lithographically defined,
CMOS-compatible, and simple fabrication; 2) large elastic
range of motion to compensate for surface nonuniformity
on the attaching substrate, especially for a large die or
interposer assembly, and CTE mismatch induced warpage;
3) high degree of freedom in interconnect design; 4) pressure-
based and non-permanent contact mechanism; since CMIs can
provide temporary interconnections, they can enable chips,
interposers, or packages to be replaced, hence increasing
system yield; and 5) since a thermocompression process is
not required, the assembly process is simplified as bonding
parameters such as temperature need not be considered [17].
With the aforementioned key features, the CMI technology can
be a key enabler for the seamless integration of heterogeneous
systems while offering design versatility and replaceability
for next-generation microelectronic applications, as illustrated
in Fig. 1.

In addition to the aforementioned application, CMIs can be
used as follows: 1) Since CMIs can be easily engineered to
have either low or high contact forces, they are well-suited
for microprobe tips; a microprobe tip should be neither too
stiff as to inflict damage on a pad nor too flexible so that it
cannot scratch through a formed oxidized layer. Therefore,
a balanced contact force is necessary during probing the
device under test. 2) These temporary interconnections can
also enable the reuse of CMOS biosensors for cell-based
assays by disposing of an integrated replaceable interface that
sits atop the biosensor rather than the biosensor itself [18].
This reuse potentially reduces the cost of operation for
biosensors, which are often irreversibly contaminated by
blood or other cellular tissue [19], [20].

Compressible 6 \
Microlnterconnects __ \

-. Easy replacement
and upgrade

-. Direct assembly
on organic substrate
-. No underfill
required

Fig. 1. Multichip integrated system with CMIs.

This paper is organized as follows. Section II describes
the CMI design with the goal of maximizing its mechanical
elastic deflection. Section III reports the CMOS-compatible
fabrication process. Section IV describes the mechanical and
electrical properties of the CMIs. Finally, Section V is the
conclusion.

II. DESIGN OF CMIs

Since CMIs are lithographically defined and agnostic to
substrate material (compatible with glass, ceramic, FR4, etc.),
many different interconnect designs can be explored. For
example, the tips of the CMIs can be designed such that the
contact region between the CMI tip and the corresponding
contact pad is controlled. The sizes and shapes of these
contact regions can be adjusted via the CMI tip. For example,
a CMI that is designed to have a platform-like tip, as shown
in Fig. 2(a), may form a large contact area onto the mating
pad; the CMI in this example possesses 80 um of vertical
height (Acyr) and 190 pm of length (£cpp) from the junction
of the anchor to the tip. Alternatively, a CMI with a “blunt”
tip is shown in Fig. 2(b), which forms a line contact with
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Fig. 2. ANSYS FEM simulation geometry of the CMI with (a) platform-like
tip and (b) blunt tip.

TABLE II
SPECIFICATIONS OF CMIs

hewr tomr Canchor wemr
CMI for large area
contact 80um | 190um | 100 pm | 100 pm
CMI for single line
contact 75um | 150 um | 100 um | 100 um

the mating pad. The shown CMI is approximately 75 um in
height (hcwmr) and 150 gum in length (£cmr). Both CMI designs
have a square anchor of 100 gm length (€anchor) and 100 gm
width (wcmr). The geometric specifications of the CMIs are
summarized in Table II.

In order to maximize the vertical elastic range of motion,
CMIs with an approximately tapered design are imple-
mented in an effort to uniformly distribute stress during
deflection [11]. In addition, CMIs are fabricated using NiW
to enhance this mechanical advantage and to be more durable
under stress (relative to copper) [21]. Specifically, NiW can
achieve a yield strength of 1.93 GPa, whereas Cu has a
yield strength of 136 MPa [22]. Therefore, compared to
Cu, NiW enables the CMI to withstand higher stress before
experiencing plastic deformation, which would cause perma-
nent change to the geometric profile of the CMI and thus
may exacerbate interconnect reliability. Even though Cu has
better electrical characteristics than those of NiW, it is the
mechanical performance of the compliant interconnect that
we wish to exploit, hence NiW has been used; electroless
gold plating is used to passivate the CMI to prevent oxidation,
which helps to lower contact resistance [12]. The CMI has a
vertically upward-curved geometry, and this ensures that the
contact region formed during deflection remains on the tip of
the CMI. To date, stress engineering has been employed to
fabricate such upward-curved interconnects [14]-[16], which
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Fig. 3.  ANSYS FEM indentation simulation of the CMI with NiW (top)
and Cu (bottom).

limits their application space significantly due to its limited
control in obtaining targeted geometric specifications, which
may be problematic when undergoing batch fabrication. More-
over, difficulty in achieving targeted geometric specifications
contributes to difficulty in achieving certain mechanical (and
electrical) characteristics such as a specified compliance. How-
ever, this paper, for the first time, demonstrates the fabrication
of upward-curved compliant interconnects utilizing a litho-
graphic process, which is not only simpler but allows for more
versatility in design (more geometries, materials, etc.) relative
to stress engineering, as will be shown in Section III.

The CMI was modeled using ANSYS finite-element
method (FEM), as shown in Fig. 3. Both Cu- and NiW-
based CMIs were deformed to a vertical depth of 45 um in
the simulations. The results of the simulations show that the
maximum von Mises stress for the NiW CMI is approximately
1.83 GPa under 45 um vertical deformation, which is less
than the assumed yield strength of NiW (1.93 GPa). However,
the maximum von Mises stress for the Cu CMI is approxi-
mately 746 MPa, which is larger than the yield strength of
Cu (136 MPa), and hence plastic deformation is experienced
by the Cu CMI (only linear model used; plastic deformation
omitted in model). Thus, the mechanical characteristics of the
NiW CMI ensure that the CMI does not undergo permanent
plastic deformation and can return to its original position
despite its large vertical deflection, which is 60% of its total
height in this case (which is not a limit).

IIT. FABRICATION PROCESS

The fabrication process of CMIs is illustrated in Fig. 4.
The first step is the spin coating of a sacrificial photoresist
layer onto the surface of the wafer followed by patterning
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Fig. 4. Fabrication process of CMIs. (A) Surface passivation. (B) Spin coat-
ing. (C) Photoresist patterning. (D) Sputtering seed layer. (E) CMI photoresist
mold patterning. (F) CMI electroplating and releasing. (G) Electroless gold
plating.

Fig. 5. SEM image of the CMIs with the platform-like tip (left) and blunt
tip (right).

Fig. 6. SEM images of a CMI array.

the sacrificial photoresist to exhibit a curved sidewall pro-
file. Next, a Ti/Cu/Ti seed layer is deposited followed by
a photoresist film to form the electroplating mold. During
electroplating, NiW is deposited within the mold to form
the CMIs. After electroplating, the mold photoresist layer,
the Ti/Cu/Ti seed layer, and the sacrificial photoresist layer
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Fig. 7. (a) 336 CMIs were batch fabricated on a chip and (b) then flip-chip
bonded to the test substrate. (c) Chip was bonded by applying epoxy.

Test substrate
CMIs chip i

-

Fig. 8. X-ray image of the assembled chip.

are removed in sequence leaving behind free-standing CMIs.
Finally, the CMIs are passivated by electroless gold plating in
order to prevent the oxidation of NiW, which negatively affects
mechanical and electrical characteristics. CMIs are immersed
in gold electroless plating solution such that all exposed
surfaces of the CMIs are coated with gold [12]. In order
to investigate the differences in mechanical and electrical
properties as a function of thickness, two samples of different
thicknesses (7.6 and 10.5 pm) are fabricated. Figs. 5 and 6
show SEM images of the fabricated CMIs.

IV. RESULTS AND DISCUSSION
A. Flip-Chip Bonding

A chip containing 336 CMIs was batch-fabricated [Fig. 7(a)]
and flip-chip bonded onto a silicon substrate containing gold
pads on its surface for four-point resistance measurements
[Fig. 7(b)]. Ti/Cu/Au were deposited using an evaporator with
thicknesses of 50/300/10 nm, respectively, in order to make the
pads. After aligning and lowering the chip into contact with the
substrate, epoxy was applied to each of the four chip corners
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Fig. 10. Compliance measurement using Hysitron Triboindenter.

to hold the chip onto the test substrate, as shown in Fig. 7(c),
to facilitate measurements. In order to check the alignment
between the CMIs and pads after flip-chip bonding, X-ray
imaging was performed using a Dage X-Ray XD7600NT.
Fig. 8 shows the X-ray image of the assembled chip, which
upon visual inspection reveals an accurate alignment.

In order to investigate the real-time motion of the CMIs
during deformation, a cross-section of the assembled chip
was recorded before the epoxy was applied using a Keyence
VHX-600 Digital Microscope. Fig. 9 shows the motion of
the CMI when the applied force increases while the gap
between the chip and substrate is decreased. Even after several
instances of deformation, the CMI returns to its original
position, which is indicative of elastic behavior. This also
demonstrates that the CMI maintains electrical contact with
the pad via its tip during deflection.

B. Mechanical Characteristics

Compliance, which is the inverse of stiffness, is a key
property of flexible interconnects since it is related to the
interconnect’s ease of vertical motion within the elastic region

Test substrate

CMI chip
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e

. Testsubstrate _

CMI chip 2

Cross-sectional view of the assembled chip while applying force from the top substrate. It is shown that CMIs deflect with force.
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Fig. 11.  Force versus indentation depth curve of CMI with (a) 7.6 um
thickness and (b) 10.5 xm thickness.

during the assembly process. Fig. 10 illustrates the measure-
ment setup for CMI compliance using a Hysitron Triboindenter
with a cono-spherical probe tip.
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Fig. 12. ANSYS compliance data as a function of thickness.
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Fig. 13. CMI structure for four-point resistance measurement.

Compliance of the CMI was measured by positioning the
cono-spherical probe tip directly on the top flat area of the
CMLI,; this was done for both CMI thickness values of 7.6 and
10.5 um. In each indentation cycle, there are two steps:
a downward moving step and an upward moving step. During
the downward motion of indentation, the CMI is deformed
downward by the probe tip to a preset depth, and the applied
force versus displacement data of the CMI is recorded. In the
same way, the reaction force of the CMI on the probe while it
recovers to its original position is recorded during the upward
motion of indentation. The CMI was deflected downward by
45 pum, and the indentation test was repeated ten times on the
same CMI to confirm repeatability.

The results of the indentation tests are shown in Fig. 11.
Fig. 11(a) is the force versus indentation depth graph of the
7.6-um-thick CMI, and Fig. 11(b) is that of the 10.5-um-
thick CMI. As seen in Fig. 11, the initial indentation shows
some minor plastic deformation. However, the CMI undergoes
elastic recovery, and hence all subsequent indentations attain
up to 45 um of vertical elastic deformation and continue to
do so even after several deflection cycles.

The compliance data from the measurements and simula-
tions are shown in Table III. The compliance of the 7.6- and
10.5-um-thick CMIs is 13.12 and 9.34 mm/N, respectively.
Using ANSYS FEM simulations, similar compliance data
was obtained for the tested CMIs. Additional compliance
simulation data with other thickness values are shown in
Fig. 12; compliance increases significantly as the thickness
decreases. Therefore, this allows us to engineer a wide range
of compliance values simply by adjusting the thickness of
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TABLE III
COMPLIANCE DATA FROM SIMULATION AND MEASUREMENT

Thickness
7.6 um 10.5 pm
. Simulation 12.9 7.3
Compliance
mm/N i
( ) Indentation 13.12 934
measurement
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Fig. 14.  Four-point resistance of CMIs with (a) 7.6 um thickness and

(b) 10.5 xm thickness.

TABLE IV
RESISTANCE DATA FROM MEASUREMENT

Thickness
7.6 pm 10.5 pm
Average
four-point resistance (m€2) 226.1 176.3

the CMlIs; the thickness of CMIs can be modified by adjusting
the time of the electroplating process. Thus, a specific compli-
ance can be attained depending on application requirements.

C. Electrical Characteristics

The electrical resistance of the CMIs with a “blunt tip”
was measured by performing a four-point resistance measure-
ment with a Signatone probe station. The CMI four-point
resistance structure, which consists of three CMIs sharing a
single anchor, as shown in Fig. 13, was used to measure the
CMI four-point resistance. Since the CMI chip and the test
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substrate are flip-chip bonded, CMIs are partially bent, and
therefore the tips of the CMIs remain in contact with the
corresponding mating pads. By applying a current source and
using a voltmeter on the appropriate contact pads, resistance
data, which includes the resistance of the CMI and the contact
resistance, can be measured. The results are summarized in
Fig. 14 and Table IV. The average four-point resistance of the
7.6-um-thick CMIs is 226.1 mQ, and that of the 10.5-um-
thick CMIs is 176.3 mQ.

V. CONCLUSION

In this paper, highly flexible NiW CMIs are batch fabricated
using standard CMOS-compatible processes. The CMIs, with
an in-line pitch of 150 xm, demonstrate up to 45 um vertical
range of motion within the elastic region. In addition, the CMIs
show favorable mechanical and electrical characteristics; the
measured compliance of the fabricated CMIs is as high as
13.12 mm/N, while the four-point resistance, including contact
resistance, is as low as 176.3 mQ. Along with these measured
characteristics, the real-time motion of CMIs during bonding
demonstrates the compliant and temporary contact between
two substrates. Since CMIs are lithographically defined, they
can easily keep pace with I/O pad size and pitch reduction.
Lastly, the high degree of freedom in interconnect design
enables CMIs to be easily engineered, and therefore this can
allow CMIs to be used in various applications.
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